Dual Emissive (green and blue) Carbon dots (C-Dots) aka g-CD and b-CD were synthesized using flowers of Nyctanthes arbortristis as the sole precursor via hydrothermal method without the aid of any external passivating agent. In the present report, the effect of time and temperature on the hydrothermal reaction was evaluated in order to modulate the surface defects that could lead to dual emissions. To gauge the nature, size, morphology, and optoelectronic characteristics, the C-Dots were characterized using high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), UV–Vis spectroscopy and Fluorescence spectroscopy. The fluorescence studies of both the Carbon Dots revealed their excitation-dependent emission characteristics with the bathochromic shift. Furthermore, both g-CD and b-CD could effectively be utilized as efficient fluorescent probes for the selective and sensitive detection of Fe3+. These fluorescent nanoprobes could selectively detect Fe3+ over a wide range of concentrations (3 µM to 100 µM) with limit of detection (LOD) as low as 0.06 µM and 0.70 µM respectively. These tuneable Carbon Dots having wider solubilities would open a new avenue as Nanosensors for real-time applications.