The risk of COVID-19 infection has increased due to the prolonged duration of travel and frequent close interactions due to popularization of railway transportations. This study utilized depth detection devices to analyze the close contact behaviors of passengers in high-speed train (HST), traditional trains (TT), waiting area in waiting room (WWR), and ticket check area in waiting room (CWR). A multi-route COVID-19 transmission model was developed to assess the risk of virus exposure in these scenarios under various non-pharmaceutical interventions. A total of 163,740 s of data was collected. The close contact ratios in HST, TT, WWR, and CWR was 5.8%, 64.0%, 7.7%, and 49.0%, respectively. The average interpersonal distance between passengers was 0.85 m, 0.92 m, 1.25 m, and 0.88 m, respectively. The probability of face-to-face contact was 9.5%, 70.0%, 64.2%, and 5.8% across each environment, respectively. When all passengers wore N95 respirators and surgical masks, the personal virus exposure via close contact can be reduced by 94.1% and 51.9%, respectively. The virus exposure in TT is about dozens of times of it in HST. In China, if all current railway traffic was replaced by HST, the total virus exposure of passengers can be reduced by roughly 50%.
Read full abstract