This study analyses and compares several forecast methods of urban rail transit passenger flow, and indicates the necessity of forecasting short-term passenger flow. Support vector regression is a promising method for the forecast of passenger flow because it uses a risk function consisting of the empirical error and a regularized term which is based on the structural risk minimization principle. In this paper, the prediction model of urban rail transit passenger flow is constructed. Through the comparison with BP neural networks forecast methods, the experimental results show that applying this method in URT passenger flow forecasting is feasible and it provides a promising alternative to passenger flow prediction.
Read full abstract