This study aimed to propose a method for simulating ground surface temperature and surface heat balance using thermal infrared remote sensing and an urban surface heat balance model and to conduct a simulation in the Tokyo metropolitan area. Previous studies have typically employed ground surface temperatures obtained through satellite remote sensing to analyze urban thermal environments. However, these studies were limited to using surface temperature data available only at the time of satellite passage. Therefore, in this study, we conducted a simulation for the Tokyo metropolitan area by integrating a one-dimensional heat balance model with ground surface temperatures observed by satellites. The novelty of this study lies in the utilization of parameters related to heat balance obtained through calculations of physical processes, as opposed to relying on empirical formulas or parameters. Consequently, realistic ground surface characteristics, including parameters such as evaporation efficiency and thermal inertia essential for the simulation, were derived by this combined method. Furthermore, diurnal variations in ground surface temperature distributions were accurately represented by using realistic surface temperature data based on satellite remote sensing, considering the effect of heat storage in urban areas—an aspect challenging to reproduce using conventional local meteorological models.
Read full abstract