Feruloyl Methane (FM) is a common impurity in Synthetic Curcumin (SC) that affects its purity and potency. The identification and quantification of FM is crucial to ensure the quality and safety of SC based drugs. The current study aims to develop and validate a simple, rapid and cost-effective analytical technique for the precise and accurate quantification of FM in SC using RP-HPLC with a UV-Vis detector (Ultraviolet/Visible) and assessment of its toxicity by multi-computational methods. The developed HPLC method with a UV-Vis detector enabled accurate identification and quantification of FM in SC. The optimized method was validated in accordance with ICH guidelines Q2(R1) and all parameters were found to be within the standard acceptance range. The ideal run time was determined to be 10 min and the impurity eluting at a retention time of 2.65 min was characterized using spectral techniques viz., mass spectrometry, FTIR and 1 H NMR, confirming the presence of FM. The amount of FM in SC was estimated to be 8.26 µg/kg. In addition, toxicity assessments using in silico tools such as ProTox- II, ADMETlab 2.0 and PASS Online indicated that the presence of FM in SC is not safe for human consumption. In conclusion, the developed method is not only capable of quantifying FM but also aids in distinguishing Natural Curcumin (NC) adulterated with SC and can be applied to a wide range of fields such as natural drug analysis, food analysis and toxicity prediction.