The acoustic niche hypothesis suggests that vocal signals of sympatric animal species are structured so as to minimize acoustic interference and facilitate communication. Accordingly, each species attempts to establish its own acoustic bandwidth so that intra-species signals are not masked. Detecting a non-random partitioning of the frequency spectrum among sympatric species could constitute evidence for the existence of acoustic avoidance behaviour. However, results from previous studies have been mixed or inconclusive, possibly as a consequence of overlooking the importance of physiological and ecological constraints. Here we introduce an improved test that incorporates prior information on body mass to account for the allometric correlation between mass (size) and vocalization frequency. By correcting for the bias induced by this correlation, the new test uncovers evidence of acoustic niche partitioning as a function of frequency in several tropical bird communities that would not be detected under a more standard test. Separately, we introduce a spatial version of the acoustic partitioning test which, in theory, could prove effective when data are collected from multiple sites located in close spatial proximity.