It is well known that minimum-diameter partitioning of symmetric dissimilarity matrices can be framed within the context of coloring the vertices of a graph. Although confusion data are typically represented in the form of asymmetric similarity matrices, they are also amenable to a graph-coloring perspective. In this paper, we propose the integration of the minimum-diameter partitioning method with a neighborhood-based coloring approach for analyzing digraphs corresponding to confusion data. This procedure is capable of producing minimum-diameter partitions with the added desirable property that vertices with the same color have similar in-neighborhoods (i.e., directed edges entering the vertex) and out-neighborhoods (i.e., directed edges exiting the vertex) for the digraph corresponding to the minimum partition diameter.
Read full abstract