Due to the uncertainty and fuzziness of information, the traditional clustering analysis method sometimes cannot meet the requirement in practice. The clustering method based on intuitionistic fuzzy set has attracted more and more scholars attention nowadays. This paper discusses the intuitionistic fuzzy C-means clustering algorithm. There are a number of clustering techniques developed in the past using different distance/similarity measure. In this paper, we proposed a improved edge density minimal spanning tree initilization method using LINEX hellinger distance based weighted LINEX intuitionistic fuzzy c means clustering. IFCM considered an uncertainty parameter called hesitation degree and incorporated a new objective function which is based upon intutionistic fuzzy entropy in the conventional Fuzzy C-means. The clustering algorithm has membership and non membership degrees as intervals. Information regarding membership and typicality degrees of samples to all clusters is given by algorithm. Furthermore, the algorithm is extended for calculating membership and updating prototypes by minimizing the new objective function of weighted LINEX intuitionistic fuzzy c-means. Finally, the developed algorithms are illustrated through conducting experiments on random dataset, partition coefficient and validation function are used to evaluate the validity of clustering also this paper compares the results of proposed method with the results of existing basic intuitionistic fuzzy c-means.
Read full abstract