Toxic particulate elements present in cigarette smoke pose health threats to the life of smokers due to direct inhalation and at the same time increase health risks to non-smokers present in the vicinity of smokers because of their exposure. This study conducted a series of experiments using a controlled experimental chamber, equipped with simulated smoking conditions for characterization of particulate trace elements in mainstream and sidestream cigarette smoke. Four popular commercial cigarette brands available in Singapore market were used in this study. The target elements for extraction and analysis were Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, Hg, K, Li, Mg, Mn, Na, Ni, Pb, Rb, Se, Sn, Sr, Te, Tl and Zn of both water-soluble and total constituents. The human health risk assessment results showed that the sidestream smoke had higher concentrations of toxic elements than those in the mainstream smoke. However, risk assessment analysis revealed that the sidestream smoke resulted in less human health risks compared to the mainstream smoke due to the influence of dilution of particulate emissions in sidestream smoke prior to inhalation exposure experienced by non-smokers. The cumulative non-cancer and cancer risks of toxic elements varied from 2.0 to 3.1 and from 398.4×10−6 to 626.1×10−6 due to inhalation of cigarette smoke by an active smoker. In the case of non-smokers, the risks were estimated under three possible cases of exposure. The cumulative cancer risks under three different cases were greater than the permissible limits. Therefore, it could be concluded that the toxic particulate elements present in cigarette smoke have significant carcinogenic and non-carcinogenic health effects due to inhalation exposure in the environment.