The biological fluids encountered by self-propelled cells display complex microstructures and rheology. We consider here the general problem of low-Reynolds number locomotion in a complex fluid. Building on classical work on the transport of particles in viscoelastic fluids, we demonstrate how to mathematically derive three integral theorems relating the arbitrary motion of an isolated organism to its swimming kinematics in a non-Newtonian fluid. These theorems correspond to three situations of interest, namely, (1) squirming motion in a linear viscoelastic fluid, (2) arbitrary surface deformation in a weakly non-Newtonian fluid, and (3) small-amplitude deformation in an arbitrarily non-Newtonian fluid. Our final results, valid for a wide-class of swimmer geometry, surface kinematics, and constitutive models, at most require mathematical knowledge of a series of Newtonian flow problems, and will be useful to quantity the locomotion of biological and synthetic swimmers in complex environments.