Ion absorption of the high harmonic fast wave in a spherical torus [Y.-K. M. Peng et al., Nucl. Fusion 26, 769 (1986)] is of critical importance to assessing the viability of the wave as a means of heating and driving current. Analysis of recent National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 40, 557 (2000)] shots has revealed that under some conditions when neutral beam and rf power are injected into the plasma simultaneously, a fast ion population with energy above the beam injection energy is sustained by the wave. In agreement with modeling, these experiments find the rf-induced fast ion tail strength and neutron rate at lower B-fields to be less enhanced, likely due to a larger β profile, which promotes greater off-axis absorption where the fast ion population is small. Ion loss codes find the increased loss fraction with decreased B insufficient to account for the changes in tail strength, providing further evidence that this is a rf interaction effect. Though greater ion absorption is predicted with lower k∥, surprisingly little variation in the tail was observed, along with a neutron rate enhancement with higher k∥. Data from the neutral particle analyzer, neutron detectors, x-ray crystal spectrometer, and Thomson scattering are presented, along with results from the TRANSP [R. J. Hawryluk, Physics of Plasmas Close to Thermonuclear Conditions 1, 19 (1981); J. P. H. E. Ongena et al., Fusion Technol. 33, 181 (1998)] transport analysis code, ray-tracing codes HPRT [J. Menard et al., Phys. Plasmas 6, 2002 (1999)], and CURRAY [T. K. Mau et al., RF Power in Plasmas: 13th Topical Conference (1999), p. 148], full-wave code AORSA [E. F. Jaeger et al., RF Power in Plasmas: 14th Topical Conference, 2001, p. 369], quasilinear code CQL3D [R. W. Harvey et al., in Proceedings of the IAEA TCM on Advances in Simulation and Modeling of Thermonuclear Plasmas, 1992], and ion loss codes EIGOL [D. S. Darrow et al., in Proceedings of the 6th IAEA TCM on Energetic Particles in Magnetic Confinement Systems, 2000, p. 109] and CONBEAM [J. Egedal et al., Phys. Plasmas 10, 2372 (2003)].