This study focuses on a technical and economic analysis of designing and operating an off-grid hybrid renewable energy system (HRES) in a rural community called Olooji, situated in Ogun state, Nigeria, as a case study. First, a size optimization model is developed on the basis of the novel metaheuristic particle swarm optimization (PSO) technique to determine the optimal configuration of the proposed off-grid system on the basis of the minimization of the levelized cost of electricity, by factoring in the local meteorological and electricity load data and details on the technical specification of the main components of the HRES. Second, a fuzzy-logic-controlled energy management system (EMS) is developed for the dynamic power control and energy storage of the proposed HRES, ensuring the optimal energy balance between the different multiple energy sources and the load at each hour of operation. The result of the size optimization model showed that an LCOE for implementing an HRES in the community would be 0.48 USD/kWh in a full-battery-capacity scenario and 1.17 USD/kWh in a half-battery-capacity scenario. The result from this study is important for quick decision-making and effective feasibility studies on the optimal technoeconomic synopsis of implementing minigrids in rural communities.
Read full abstract