Nanofabrication is one of the core techniques in rapidly evolving nanoscience and nanotechnology. Conventional top-down nanofabrication approaches such as photolithography and electron beam lithography can produce high-resolution nanostructures in a robust way. However, these methods usually involve multistep processing and sophisticated instruments and have difficulty in fabricating three-dimensional complex structures of multiple materials and reconfigurability. Recently, bottom-up techniques have emerged as promising alternatives to fabricating nanostructures via the assembly of individual building blocks. In comparison to top-down lithographical methods, bottom-up assembly features the on-demand construction of superstructures with controllable configurations at single-particle resolution. The size, shape, and composition of chemically synthesized building blocks can also be precisely tailored down to the atomic scale to fabricate multimaterial architectural structures of high flexibility. Many techniques have been reported to assemble individual nanoparticles into complex structures, such as self-assembly, DNA nanotechnology, patchy colloids, and optically controlled assembly. Among them, the optically controlled assembly has the advantages of remote control, site-specific manipulation of single components, applicability to a wide range of building blocks, and arbitrary configurations of the assembled structures. In this Account, we provide a concise review of our contributions to the optical assembly of architectural materials and structures using discrete nanoparticles as the building blocks. By exploiting entropically favorable optothermal conversion and controlling optothermal-matter interactions, we have developed optothermal assembly techniques to manipulate and assemble individual nanoparticles. Our techniques can be operated both in solution and on solid substrates. First, we discuss the opto-thermoelectric assembly (OTA) of colloidal particles into superstructures by coordinating thermophoresis and interparticle depletion bonding in the solution. Localized laser heating generates a temperature gradient field, where the thermal migration of ions creates a thermoelectric field to trap charged particles. The depletion of ion species at the gap between closely positioned particles under optical heating provides strong interparticle bonding to stabilize colloidal superstructures with precisely controlled configurations and interparticle distances. Second, we discuss bubble-pen lithography (BPL) for the rapid printing of nanoparticles using an optothermal microbubble. The long-range convection flow induced by the optothermal bubble drags the colloidal particles to the substrate with a high velocity. BPL represents a general method for printing all kinds of building blocks into desired patterns in a high-resolution and high-throughput way. Third, we present the optothermally-gated photon nudging (OPN) technique, which manipulates and assembles particles on a solid substrate. Our solid-phase optical control of particles synergizes the modulation of particle-substrate interactions by optothermal effects and photon nudging of the particles by optical scattering forces. Operated on the solid surfaces without liquid media, OPN can avoid the undesired Brownian motion of nanoparticles in solutions to manipulate individual particles with high accuracy. In addition, the assembled structures can be actively reassembled into new configurations for the fabrication of tunable functional devices. Next, we discuss applications of the optothermally assembled nanostructures in surface-enhanced Raman spectroscopy, color displays, biomolecule sensing, and fundamental research. Finally, we conclude this Account with our perspectives on the challenges, opportunities, and future directions in the development and application of optothermal assembly.
Read full abstract