Abstract
We experimentally observe the dipole scattering of a nanoparticle using a high numerical aperture (NA) imaging system. The optically levitated nanoparticle provides an environment free of a particle–substrate interaction. We illuminate the silica nanoparticle in vacuum with a 532 nm laser beam orthogonally to the propagation direction of the 1064 nm trapping laser beam strongly focused by the same high NA objective used to collect the scattering, which results in a dark background and high signal-noise ratio. The dipole orientations of the nanoparticle induced by the linear polarization of the incident laser are studied by measuring the scattering light distribution in the image and the Fourier space (k-space) as we rotate the illuminating light polarization. The polarization vortex (vector beam) is observed for the special case, when the dipole orientation of the nanoparticle is aligned along the optical axis of the microscope objective. Our work offers an important platform for studying the scattering anisotropy with Kerker conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.