The integration of myofibrillar proteins with plant proteins has gained substantial consideration in the food industry for producing healthier and more sustainable food products. However, achieving the desired properties of these protein emulsions remains challenging. High-intensity ultrasound treatment has emerged as a promising method to enhance the structural and functional properties of emulsions. We have explored the previously unexamined potential of ultrasonication with respect to improving the stability of animal-plant-based protein emulsions, providing new insights into the interactions of novel protein combinations. Ultrasonication improved the stability of the myofibrillar protein-soybean protein isolate (MS), myofibrillar protein-pea protein (MP) and myofibrillar protein-hydrolyzed wheat protein (MW) emulsions. Interestingly, the particle size of MS, MP and MW emulsions was significantly reduced with ultrasound treatment for 20 min. Among the three protein combinations, MW presented better stability, as indicated by the higher zeta potential, lower particle size and turbidity values. Moreover, the stability of MW was increased with an increasing ultrasound time. The stability of MW was significantly improved after 10 min of ultrasound treatment as a result of improving the zeta potential, particle size and turbidity values, changing the secondary structure and microstructure of the emulsion. © 2025 Society of Chemical Industry.
Read full abstract