Inertial migration of spherical particles has been investigated extensively using experiments, theory, and computational modeling. Yet, a systematic investigation of the effect of particle shape on inertial migration is still lacking. Herein, we numerically mapped the migration dynamics of a prolate particle in a straight rectangular microchannel using smoothed particle hydrodynamics at moderate Reynolds number flows. After validation, we applied our model to 2:1 and 3:1 shape aspect ratio particles at multiple confinement ratios. Their effects on the final focusing position, rotational behavior, and transitional dynamics were studied. In addition to the commonly reported tumbling motion, for the first time, we identified a new logrolling behavior of a prolate ellipsoidal particle in the confined channel. This new behavior occurs when the confinement ratio is above an approximate threshold value of K = 0.72. Our microfluidic experiments using cell aggregates with similar shape aspect ratio and confinement ratio confirmed this new predicted logrolling motion. We also found that the same particle can undergo different rotational modes, including kayaking behavior, depending on its initial cross-sectional position and orientation. Furthermore, we examined the migration speed, angular velocity, and rotation period as well as their dependence on both particle shape aspect ratio and confinement ratio. Our findings are especially relevant to the applications where particle shape and alignment are used for sorting and analysis, such as the use of barcoded particles for biochemical assays through optical reading, or the shape-based enrichment of microalgae, bacteria, and chromosomes.
Read full abstract