This study aimed to evaluate the effects of partial substitution of sodium chloride (NaCl) with potassium chloride (KCl) in combination with high-pressure processing (HPP) on the physicochemical properties and volatile compounds of beef sausage during cold storage at 4 °C. Significant differences were found in the volatile compounds of beef sausages with 0%, 25%, and 50% NaCl contents partially substituted with KCl subjected to 28 days of storage and were well-visualized by heat map analysis. A total of 75 volatile compounds were identified and quantified in the beef sausages at the end of 28 days of storage, including 12 aldehydes, 4 phenols, 2 ketones, 18 alcohols, 8 acids, 3 esters, 14 terpenes, and 14 alkanes. Thirteen compounds had low odor activity values (OAV) (OAV < 1); however, high OAV (OAV > 1) were obtained after partial substitution of NaCl by KCl at 25% and 50% with HPP treatment compared to the non-HPP treated samples. In addition, 50% NaCl substitution with KCl in conjunction with HPP treatments increased thiobarbituric acid reactive substances (TBARS) by (0.46 ± 0.03 mg/MDA) compared with no HPP treatments. Replacement of 25% and 50% NaCl with KCl decreased TBARS by an average of 10.8% and 11.10%, respectively, compared to 100% NaCl coupled with HPP beef sausages. In summary, HPP and partial substitution of NaCl with KCl at 25% and 50% can be used to compensate for the reduction of NaCl in beef sausage by keeping the physical and flavor fraction at required levels.
Read full abstract