Abstract

To improve the quality of salted quail eggs and solve the problem of excessive sodium content in salted eggs, we selected substitutes (K2 CO3 , CaCl2 , MgCl2 , ZnCl2 , and FeC6 H5 O7 ) to partially replace NaCl and study its effect on water migration, physicochemical properties, and textural characteristics. The low-field nuclear magnetic resonance technology (LF-NMR) was used to qualitatively analyze the moisture and proton content of quail eggs during the pickling process. The results showed that the relaxation curves of ZnCl2 and FeC6 H5 O7 groups were significantly different from those of other groups. The bound water content of the ZnCl2 group increased significantly, and FeC6 H5 O7 made the binding degree of water closer. The Na+ of different substitute groups was determined by atomic absorption spectrometry; it was found that the permeation rate of NaCl in the curing process was in the following order: K2 CO3 > control group > MgCl2 > FeC6 H5 O7 > CaCl2 > ZnCl2 . Through the electronic tongue study and comparing the ripening period of salted quail eggs, it was found that the flavor and ripening time of salted quail eggs cured by ZnCl2 and FeC6 H5 O7 were not suitable for low-sodium pickling preparation. At the same time, CaCl2 and MgCl2 were suitable for low-sodium pickling and could improve the product quality. When using K2 CO3 , the substitution ratio can be reduced and two or more compound-curing agents can be formed with CaCl2 and MgCl2 , thus reducing the content of sodium salt in salted eggs. PRACTICAL APPLICATIONS: We simulated the metallic elements contained in the traditional black ash-salted eggs and salt mud coatings. By partial substitution of sodium chloride (NaCl) with different metal salts (K2 CO3 , CaCl2 , MgCl2 , ZnCl2 , and FeC6 H5 O7 ), we studied the effects of these metal salts on the physical and chemical properties, texture, and microstructure of quail eggs during the pickling process. Several suitable low-sodium substitutes were screened out to provide a theoretical foundation for the process optimization of low-sodium-salted quail eggs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call