We derive the transverse projection operators for fields with arbitrary integer and half-integer spin on three-dimensional anti-de Sitter space, AdS3. The projectors are constructed in terms of the quadratic Casimir operators of the isometry group SO(2, 2) of AdS3. Their poles are demonstrated to correspond to (partially) massless fields. As an application, we make use of the projectors to recast the conformal and topologically massive higher-spin actions in AdS3 into a manifestly gauge-invariant and factorised form. We also propose operators which isolate the component of a field that is transverse and carries a definite helicity. Such fields correspond to irreducible representations of SO(2, 2). Our results are then extended to the case of mathcal{N} = 1 AdS3 supersymmetry.