Colorectal cancer is one of the most diagnosed types of cancer in developed countries. Current diagnostic methods are partly dependent on pathologist experience and laboratories instrumentation. In this study, we used Fourier Transform Infrared (FTIR) spectroscopy in transflection mode, combined with Principal Components Analysis followed by Linear Discriminant Analysis (PCA-LDA) and Partial Least Squares – Discriminant Analysis (PLS-DA), to build a classification algorithm to diagnose colon cancer in cell samples, based on absorption spectra measured in two spectral ranges of the mid-infrared spectrum. In particular, PCA technique highlights small biochemical differences between healthy and cancerous cells: these are related to the larger lipid content in the former compared with the latter and to the larger relative amount of protein and nucleic acid components in the cancerous cells compared with the healthy ones. Comparison of the classification accuracy of PCA-LDA and PLS-DA methods applied to FTIR spectra measured in the 1000–1800 cm−1 (low wavenumber range, LWR) and 2700–3700 cm−1 (high wavenumber range, HWR) remarks that both algorithms are able to classify hidden class FTIR spectra with excellent accuracy (100 %) in both spectral regions. This is a hopeful result for clinical translation of infrared spectroscopy: in fact, it makes reliable the predictions obtained using FTIR measurements carried out only in the HWR, in which the glass slides used in clinical laboratories are transparent to IR radiation.
Read full abstract