Pycnandra (Sapotaceae), the largest endemic genus in New Caledonia, comprises 66 species classified in six subgenera. We tested phylogenetic relationships and a proposed infrageneric classification by sampling 60 species for sequences of nuclear ribosomal DNA (ETS, ITS, RPB2) and plastid DNA (trnH–psbA) and nine morphological characters. Data were analysed with Bayesian inference, parsimony jackknifing and lineage through time. We recovered a phylogenetic tree supporting the recognition of six proposed subgenera (Achradotypus, Leptostylis, Pycnandra, Sebertia, Trouettia and Wagapensia). Because a subgeneric classification is used, the nomenclature will be stable when the members are transferred to Pycnandra. Morphological traits were optimized in the BEAST analysis, adding evidence to earlier work that morphology has limited value for successfully diagnosing groups in Sapotaceae. We confirm a previously suspected case of cryptic species that exhibit the same morphological features and require the same abiotic conditions, but are distantly related in the phylogenetic tree. We detected two possible new cases of cryptic sibling species that might warrant recognition. A slowdown in speciation rate in several genera has been suggested as evidence that New Caledonia was once submerged after rifting from Australia. Plotting lineages through time reveals two important intervals at 7.5–8.6 Ma and present to 1.5 Ma, when net molecular diversification within the genus was zero. This indicates that the genus presently has reached a dynamic equilibrium, providing additional evidence that New Caledonia is an old Darwinian island, being submerged during the Eocene and colonized after re-emergence c. 37 Ma.