In this paper, we address the retrieval of spatially distributed latent heat flux ( λ E) over a tropical dry forest using multi-spectral and thermal unmanned aerial vehicle (UAV) imagery. The study was carried out in the Santa Rosa National Park Environmental Monitoring Super-Site, Costa Rica, in June 2016. The triangle method was used to derive λ E from the UAV imagery and the results were compared to λ E measurements of an eddy covariance system within the coincident eddy flux tower footprint. The tower footprint was derived using a two-dimensional parameterization model for flux footprint prediction. The comparisons with the flux tower measurements showed a mean relative difference of 10.98% with a slight overestimation of the UAV-based flux retrievals by nearly 7.7 Wm − 2 . The results are in good agreement with satellite-based retrievals, as provided by the literature, for which the triangle method was initially developed and mostly used so far. This study proved to be a promising approach for transferring the triangle method to UAV imagery in ecosystems such as tropical dry forests. With the presented approach, new details in spatially distributed latent heat flux estimates at ultra-high resolution are now possible, thereby potentially closing the gap in spatial resolution between satellites and flux towers. Even more, it allows tracing the latent heat flux from single trees at leaf level. Besides, this approach also opens new perspectives for the monitoring of latent heat fluxes in tropical dry forests.
Read full abstract