Murine F9 embryonal carcinoma cells exposed to retinoic acid and dibutyryl cyclic AMP gradually arborize and acquire a neuron-like morphology in monolayer culture. Whether F9 cells can be induced to differentiate into cells with features specific to neural cells is controversial. We analyzed the intermediate filament content and pericellular matrix proteins of F9 cells after exposing them to retinoic acid, dibutyryl cyclic AMP, and nerve growth factor. In long-term cultures, a great majority of the cells appeared neuron-like, but showed intra- and pericellular laminin and type IV collagen, and frequently cytokeratin filaments as well. Several monoclonal antibodies to neurofilaments did not react with these cells in immunofluorescence or immunoblotting, though they recognize either all or individual mouse neurofilament triplet proteins. Polyclonal antibodies to neurofilament proteins gave a diffuse, nonfibrillar, vinblastine-resistant fluorescence in the morphologically neuron-like cells, but in immunoblotting failed to reveal polypeptides compatible with neurofilament triplet proteins. In long-term cultures, most of the cells appeared to have partially or totally lost the intermediate filaments. This was confirmed with anti-IFA antibodies which normally react with all intermediate filament proteins. The F9-derived cells did not respond to nerve growth factor in any detectable way. We conclude that the morphologically neuron-like derivatives of F9 cells display characteristics of modified parietal endoderm-like cells and do not show unequivocal features of neural cells.
Read full abstract