This study presents a hybrid solution for the charging station location-capacity problem. The proposed approach simultaneously determines the location and capacity of charging stations (i.e., number of charging piles), and assigns piles to electric vehicles based on their level of charge. The problem is formulated as a bi-objective mixed-integer nonlinear programming model to minimize the total cost of establishing charging stations together with the average customers’ waiting time. The proposed solution combines queueing theory with mathematical modelling to estimate the average waiting time. A deep learning algorithm is then developed to enhance the precision of waiting time estimation. Another contribution is involving a deep neural network model in improving NSGA-II algorithm. Numerical experiments are conducted in Halifax, Canada to assess the performance of the proposed framework. The results demonstrate the strong predictive performance of the deep learning algorithm and highlight the limitations of traditional queueing models in estimating waiting times in charging stations (i.e., 99.8% improvement in computation time, as well as accuracy improvement of time estimations from 13% to 1.6% deviation). Several valuable insights are obtained to improve the operational performance of charging stations such as achieving a significant (i.e., 61.5%) drop in the average waiting time across the network by a modest (i.e., 29.2%) increase in the initial investments. Also, it reveals that the variability of service rate significantly impacts the average waiting time (i.e., a 50% increase in the variability of service rate causes a substantial 950.56% surge in the average waiting time). The findings underscore the need to control service rate fluctuations to reduce wait times and boost driver satisfaction. The improved NSGA-II algorithm shows 12.77% improvement in the Pareto front solutions. Finally, the proposed prioritization strategy based on the charging level of vehicles could reduce the average waiting time and cost compared to the first-come-first-served strategy.
Read full abstract