Peripheral osmoreceptors monitor dietary NaCl and modify central nervous system and renal sympathetic nervous system activity accordingly. Experimental evidence suggests that these responses are dependent on the hepatic nerves. Peripheral osmoreceptors also modify arginine vasopressin (AVP) secretion. However, although hepatic denervation reportedly blunts activation of both supraoptic and paraventricular hypothalamic neurons after intraportal NaCl infusion, the role of the hepatic nerves in the AVP release has not been directly examined. The present study tests the hypothesis that the hepatic nerves modify AVP release in response to intragastric NaCl infusion. Wistar-Kyoto rats (WKY) received either hepatic denervation or a sham operation. Intragastric NaCl infusion significantly elevated plasma AVP in both sham-operated WKY and hepatic-denervated WKY, and the responses were not different between these groups. Second, previous studies suggest that both AVP secretion and baroreflexes are blunted in spontaneously hypertensive rats (SHR), deficits that contribute to the observed hypertension in SHR. We hypothesized that SHR also have a blunted peripheral osmoreceptor reflex and that this contributes to NaCl-sensitive hypertension. In contrast to our prediction, in SHR intragastric NaCl infusion induced an increase in plasma AVP that was similar to that in the WKY groups. Thus, although hepatic osmoreceptors are important for chronic regulation of arterial pressure, renal sympathetic nervous system activity, and the activity of hypothalamic neurons, they do not appear to influence plasma AVP concentration in response to intragastric NaCl.
Read full abstract