Malaria is a leading cause of morbidity and mortality in tropical and sub-tropical regions. This research proposed a malaria diagnosis system based on the you only look once algorithm for malaria parasite detection and the convolutional neural network algorithm for malaria parasite life stage classification. Two public datasets are utilized: MBB and MP-IDB. The MBB dataset includes human blood smears infected with Plasmodium vivax (P. vivax). While the MP-IDB dataset comprises 4 species of malaria parasites: P. vivax, P. ovale, P. malariae, and P. falciparum. Four distinct stages of life exist in every species, including ring, trophozoite, schizont, and gametocyte. For the MBB dataset, detection and classification accuracies of 0.92 and 0.93, respectively, were achieved. For the MP-IDB dataset, the proposed algorithms yielded the accuracies for detection and classification as follows: 0.84 and 0.94 for P. vivax; 0.82 and 0.93 for P. ovale; 0.79 and 0.93 for P. malariae; and 0.92 and 0.96 for P. falciparum. The detection results showed the models trained by P. vivax alone provide good detection capabilities also for other species of malaria parasites. The classification performance showed the proposed algorithms yielded good malaria parasite life stage classification performance. The future directions include collecting more data and exploring more sophisticated algorithms.