We determine the necessary and sufficient conditions to characterize the matrices which transform convex sequences and Maddox sequences into <svg style="vertical-align:-3.2316pt;width:34.75px;" id="M1" height="14.7125" version="1.1" viewBox="0 0 34.75 14.7125" width="34.75" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(1.25,0,0,-1.25,0,14.7125)"> <g transform="translate(72,-60.23)"> <text transform="matrix(1,0,0,-1,-71.95,63.5)"> <tspan style="font-size: 12.50px; " x="0" y="0">𝑉</tspan> </text> <text transform="matrix(1,0,0,-1,-64.76,60.37)"> <tspan style="font-size: 8.75px; " x="0" y="0">𝜎</tspan> </text> <text transform="matrix(1,0,0,-1,-59.13,63.5)"> <tspan style="font-size: 12.50px; " x="0" y="0">(</tspan> <tspan style="font-size: 12.50px; " x="4.1634989" y="0">𝜃</tspan> <tspan style="font-size: 12.50px; " x="10.715071" y="0">)</tspan> </text> </g> </g> </svg> and <svg style="vertical-align:-3.2316pt;width:41.974998px;" id="M2" height="15.1125" version="1.1" viewBox="0 0 41.974998 15.1125" width="41.974998" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(1.25,0,0,-1.25,0,15.1125)"> <g transform="translate(72,-59.91)"> <text transform="matrix(1,0,0,-1,-71.95,63.19)"> <tspan style="font-size: 12.50px; " x="0" y="0">𝑉</tspan> </text> <text transform="matrix(1,0,0,-1,-61.95,68.19)"> <tspan style="font-size: 8.75px; " x="0" y="0">∞</tspan> <tspan style="font-size: 8.75px; " x="-2.8099999" y="8.1300001">𝜎</tspan> </text> <text transform="matrix(1,0,0,-1,-53.35,63.19)"> <tspan style="font-size: 12.50px; " x="0" y="0">(</tspan> <tspan style="font-size: 12.50px; " x="4.1634989" y="0">𝜃</tspan> <tspan style="font-size: 12.50px; " x="10.715071" y="0">)</tspan> </text> </g> </g> </svg>.