The properties of the materials used in underwater acoustics are important for applications such as acoustic windows, reflectors and baffles, acoustic barriers or screens, decoupling materials, and anechoic coatings. To characterise the performance of such materials at frequencies above 1 kHz, measurements are typically undertaken on samples of the material in the form of finite sized panels. Such measurements suffer from uncertainty due to the finite size of the panel (leading to contaminating signals from edge diffraction), and the difficulty in simulating the ideal plane-wave insonification. This paper describes work at the UK National Physical Laboratory to minimise these effects by use of: (i) a parametric array as a sound source that provides a directional beam and short broadband pulses; and (ii) nearfield scanning using a hydrophone to sample the complex sound pressure field interacting with the test sample, decomposing the sound field into its plane-wave components. Results are presented of these techniques applied to measurements in laboratory test tanks at frequencies between a few kilohertz and a few hundred kilohertz to determine the reflection and transmission performance of a range of test samples, including panels consisting of homogeneous polymers and materials with regular periodic structure.
Read full abstract