In this study, aluminum-based wastes are used as energy carriers for on-demand hydrogen production through sustainable, eco-friendly, and cost-effective controlled electrochemical corrosion in aqueous solution. The electrochemical process is very effective because it (i) uses waste metals to produce hydrogen, (ii) corroborates to circular economy, (iii) produces high purity hydrogen, (iv) is based on simple hydrolysis reaction of metals in relevant solutions, (v) electricity is not required and (iv) recovers part of the chemical Gibbs energy of the electrochemical corrosion usually entirely lost in the environment. We systematically studied the generation of hydrogen from industrial waste Dust Scrap Aluminum Alloy (DSAA) belonging to Al 6063 series for the first time. The process is investigated in a novel hand-made batch reactor with a low-cost commercial body suitable to an easy scale-up. Kinetics of DSAA hydrolysis reaction was explored by measuring the variation of aluminium ion concentration at different immersion times through Inductively Coupled Plasma (ICP) and weight loss measurements at different temperatures and NaOH catalyst concentrations. The effect of hydrolysis reaction on the composition and morphology of the metal surfaces in terms of formed oxide layers was studied in detail using Optical Polarizing Microscopy (OPM), Energy dispersive X-ray (EDX) and Scanning Electron Microscopy (SEM) techniques. The criteria used to evaluate the hydrogen reactor performance were hydrogen (i) yield and (ii) production rate. The experimental results showed that a strong increase in NaOH concentration (from 0.75 to 5 M) corresponding to a slow increase in hydrolysis reaction temperature (from 38.8 to 49.9 °C) lead to an improvement in hydrogen generation rate of one order of magnitude, i.e. from 35.71 to 421.41 ml/(g∙min). Low but constant rate of hydrogen can be generated for longer times at low NaOH concentrations (0.75 M), while fast and variable hydrogen generation rate occurs at higher concentrations (5 M) in short times. In the case study of Al 6063 series waste scrap, the hydrolysis reactor parameters can be regulated to deliver hydrogen generation rates from 35.71 to 421.41 ml/(g min) according to requirements. We expect that the results presented in this work will encourage researchers to study the possible use of other metal-based and multi-material plastic/metal wastes thermodynamically prone to electrochemical corrosion process as possible source of hydrogen.Graphical
Read full abstract