Understanding the thermodynamics of paramagnetic transition metal hydride complexes, especially of the abundant 3d metals, is important in the design of electrocatalysts and organometallic catalysts. The pKaMeCN([MHLn]+/[MLn) of paramagnetic hydrides in MeCN are estimated for the first time using the ligand acidity constant (LAC) equation where contributions to the pKaMeCN from each ligand are simply added together, with the sum corrected for effects of charge and 5d metals. The pKaLAC-MeCN([MHLn]+/MLn) of over 200 hydride complexes MHLn are used, along with their electrochemical potentials from the literature, in an uncommonly applied thermochemical cycle in order to reveal systematic trends in the redox couples MIII/II and MV/IV (M = Cr, Mo, W), MnII/I, ReVI/V and ReIV/III, MIII/II and MIV/III (M = Fe, Ru, Os), and MIII/II and MII/I (M = Co, Rh, and Ir) and allow the estimation of the bond dissociation free energies BDFE(MH) of the unoxidized hydrides MHLn and the prediction of the electrochemical potential for their oxidation. Density functional theory (DFT) calculations are used to validate the pKaLAC-MeCN values of hydrides of WIII, MnII, FeIII, RuIII, CoII, and NiIII. When a pKaLAC-MeCN is less than zero for a given complex [MHLn]+, the oxidation of MHLn is irreversible due to proton loss from the oxidized complex to the solvent. When pKaLAC-MeCN ≫ 0, the oxidation is reversible when there is no gross change in the coordination geometry upon a change in the redox state. Twenty paramagnetic hydrides prepared in bulk all have pKaLAC-MeCN > 8.