In the paper, a brand-new three-dimensional hygro-thermo-mechanical bending model of anisotropic skewed parallelogram plates with extreme skew angle in large deformation supported by a tri-parameter nonlinear elastic foundation is proposed. By investigating the mutual coupled interaction of hygrothermal effects between in-plane distribution and thickness variation, nine kinds of spatially analytical hygrothermal fields in parallelogram domain are established by analyzing the Dirichlet, Neumann and Robin thermal boundary conditions of sinusoidally induced heat conduction at top and bottom surfaces. With coordinate transformation in oblique system considering the Von Kármán membrane strains, the highly coupled and strongly nonlinear governing partial differential equations have been derived. A wavelet solving procedure has been developed with the convergence process validated and precision of obtained solutions verified in good accordance with published results. Parametric studies have been carried out to investigate the large-deflection behavior of simply supported or clamped skew plates on Winkler–Pasternak foundation under combined mechanical and hygrothermal loads. The influence of skew angle, material orthotropy and foundation contact nonlinearity is examined, which reveals the geometrically nonlinear responses of plates are highly affected by large oblique angle, principle orientation of material orthotropy and foundation parameters.
Read full abstract