Abstract

The paper considers a method of geometric modeling applied when solving basic twodimensional problems of the theory of elasticity and structural mechanics, in particular the applied problems of engineering. The subject of this study is vibrations of thin elastic parallelogram plates of constant thickness. To determine a basic frequency of vibrations, the interpolation method based on the geometric characteristic of the shape of plates (membrane, cross sections of a rod) is proposed. This characteristic represents a ratio of interior and exterior conformal radii of the plate. As is known from the theory of conformal mappings, conformal radii are those obtained by mapping of a plate onto the interior and exterior of a unit disk. The paper presents basic terms, tables, and formulas related to the considered geometric method with a comparative analysis of the curve diagrams obtained using various interpolation formulas. The original computer program is also developed. The main advantage of the proposed method of determining the basic frequency of plate vibrations is a graphic representation of results that allows one to accurately determine the required solution on the graph among the other solutions corresponding to the considered case of parallelogram plates. Although there are many known approximate approaches, which are used to solve the considered problems, only geometric modeling technique based on the conformal radii ratio gives such an opportunity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.