In nonlinear optical fibres, the evolution of two polarization envelopes is governed by a system of coupled nonlinear Schrödinger (CNLS) equations. In this paper, with the aid of symbolic computation, the analytical bright one- and two-soliton solutions of the (2+1)-dimensional CNLS equations under certain constraints are presented by employing the Hirota method. We have discussed the head-on and overtaking interactions which include elastic and inelastic collisions between two parallel bright solitons. In the interaction process, the intensities of solitons can exhibit various redistributions. We also point out that these properties have important physical applications in constructing various logic gates and nonlinear optical fibers.
Read full abstract