Context. Nature is the relation among processes and phenomena. Nothing exists in the universe without relations. Computer is transactions of relations between data with the help of control and execution mechanisms. Quantum relations are a superposition of particles and their states. Superposition and entanglement are equivalent concepts. Entanglement is a non-local superposition of deterministic states. A quantum computer is unconditional transactions of relations between qubit data. Quantum computer is an analog device for parallel solution of combinatorial problems. Practically oriented definitions of the quantum computer concepts are the path to development of scalable quantum parallel algorithms for combinatorial problems solving. Any algorithm can be reduced to a sequence of operations without conditions, because any truth table is a collection of a complete system of conditions-states. Any sequence of actions can always be reduced to one parallel operation. Conditions and sequences arise only when the developer wants to use previously created primitive constructs to build an always non-optimal computing unit. The paradigm of quantum computer creation is determined through the use of photonic transactions on the electrons of an atom may exclude the use of quantum logic. The evolutionary path of a quantum computer from the classical one: “memory-address-transaction” (MAT) → “electron-addresstransaction” → “electron-address-quantaction” (EAQ) → state-superposition-logic. The meeting point of classical and quantum computers is photon transactions on the structure of electrons. Everything that is calculated on a quantum computer can be calculated in parallel on a classical one on account of memory redundancy. The given example is a memory-driven algorithm for modeling digital products based on qubit-vector forms of functionality description for significant performance boost of computing processes by parallel execution of logical operations.
 Objective. Simulation of the correct SoC-component behavior based on vector representation of the logic. Formation of the triggering development of a computing based on the superposition of the classical, quantum and analog computing process, which in its development should be based on technological qubit, tabular and vector data structures for the parallel solution of combinatorial problems.
 Method. MAT-computing implements any algorithms on account of transactions (read-write) in memory. Qubit-vector models for describing functionalities, which differ from known truth tables in compactness of description and manufacturability for the implementation of parallel algorithms of the synthesis and analysis of digital devices and SoC-components.
 Results. 1) The metric of the technological data structures, focused on parallel troubleshooting in digital systems based on the usage of two logical vector operations, was proposed for the first time. 2) The metric of relations between the individual components of QC, allowing organizing a quantum deterministic computer, has been further developed. 3) Quantum architectural solutions, that allow solving coverage problems in a quasi-parallel mode, were proposed for the first time. 4) Architectural solutions based on an analog-to-digital computing, which can be used to solve the problems of the digital systems parallel analysis, have been further developed. 5) Vector-qubit structures of the logic data, that allow a quasi-parallel simulation of digital circuits, were proposed.
 Conclusions. Qubit models, quantum methods and combinatorial algorithms for technical diagnostics of digital devices have been implemented, which can significantly (up to 25%) reduce the time of test synthesis, deductive modeling of faulty and correct behavior, search for defective states by introducing an innovative idea of using qubit-vector data structures for describing logical components. Comparative assessments of qubit models and methods usage show an increase in the efficiency of algorithms for modeling digital devices compared to tabular ones. The superposition of a classical, quantum and analog computer is integrally represented, which allows to find the best solutions for recognition and decision making.
Read full abstract