Heat flux is a key issue in tokamak devices. The non-uniform high heat flux on Plasma-Facing Components (PFCs) has led to local severe damage, including cracks and melting, in current tokamaks such as EAST and WEST. To characterize the non-uniform heat flux loading on the divertor surfaces, the parallel incident heat flux q‖, the decay length λq along the radial direction and the Gaussian spreading width S are used. The q‖ can lead to a very high peak heat flux loading on the divertor surfaces, which may cause critical heat flux problems. Additionally, the decay length is a key consideration for future tokamak designs like ITER. Every effort on the present tokamak devices contributes to updating the scaling of the heat flux. In EAST, a calculation method based on a high spatial resolution IR camera is employed to obtain the heat flux and decay length. The main process involves comparing the surface temperature distribution calculated by Fluent simulation with that measured by an infrared camera. Taking a high heating source discharge (#123059 ∼ 10 MW heating source) as an example, the heat flux is as follows: q‖=216-14+19 MW/m2, with λq=6.2-1.1+1 mm, and S=1.2±0.4 mm; it is in line with Langmuir probe data. The infrared-based heat flux calculation method can calculate the peak incident heat flux and the decay length simultaneously, its result can help to update the scaling model of heat flux, thus not only helping to improve the present device but also offering important reference for future tokamaks