To investigate the expression of motilin and its precursor mRNA in normal human thyroid. To compare the expression differences of motilin and it precursor mRNA between normal thyroid and intestines. To study the expression of motilin and its precursor mRNA in human thyroid tumors and their clinical implications. RT-PCR, Southern blot and molecular cloning were used to detect motilin transcript expression in human thyroid and mucous membrane of small intestine. Real-time PCR and immunohistochemical techniques were used to quantify motilin precursor mRNA and motilin peptide in thyroid tissue samples including adenoma, medullary carcinoma, follicular carcinoma, papillary carcinoma and nodular goiter. (1) The expression of motilin and its precursor mRNA in normal human thyroid was primarily in the thyroid C cells. (2) RT-PCR and Southern blot showed that motilin mRNA expressed in human thyroid was identical to that expressed in duodenum with identical sequence deposited in NCBI Genbank of America. (3) Immunohistochemistry, Western blot research and real-time PCR studies showed that motilin and its precursor mRNA were expressed in normal and tumor tissues of human thyroid. Thyroid tumors (acidophilic adenoma, medullary carcinoma, follicular carcinoma, papillary carcinoma and nodular goiter) showed intense and diffuse immunostaining for motilin peptide. Moreover, the expression of motilin and its precursor mRNA in thyroid medullar carcinoma and acidophilic adenoma were significantly higher than those of normal thyroid tissue (P < 0.05). The expression in thyroid follicular and papillary carcinomas were significantly lower than those of normal thyroid tissue (P < 0.05). There was no difference of the expression between nodular goiter and normal thyroid tissue (P > 0.05). Motilin peptide and its precursor mRNA are expressed in C cells of human thyroid. The sequence of motilin is identical to that expressed in duodenum from NCBI Genbank of America. The expressions of both motilin and its precursor mRNA in thyroid medullary carcinoma and acidophilic adenoma are significantly increased. In contrast, their expressions in thyroid follicular and papillary carcinomas are significantly decreased. Motilin may regulate physiological functions of the thyroid through parafollicular cells. Motilin may be involved in the pathogenesis of medullary carcinoma and acidophilic adenoma of the thyroid.