The issues of modeling the electrophysical characteristics of a silicon conical field effect GAA nanotransistor are discussed. An analytical model of the drain current of a transistor with a fully enclosing conical gate with a stack sub-gate oxide SiO2/HfO2 has been developed, taking into account the effect of the charge of the interphase trap at the Si/SiO2 interface. To simulate the potential distribution in a conical working area under the condition of constant trap density, an analytical solution of the Poisson equation was obtained using the method of parabolic approximation in a cylindrical coordinate system with appropriate boundary conditions. The potential model was used to develop an expression for the GAA drain current of a nanotransistor with a stack gate oxide. The key electrophysical characteristics are numerically investigated depending on the density of traps and the thicknesses of SiO2 and HfO2 layers.
Read full abstract