BackgroundAncylostoma species are hematophagous parasites that cause chronic hemorrhage in various animals and humans. Pangolins, also known as scaly anteaters, are mammals that live in soil environments where they are readily exposed to soil-borne parasitic nematodes. However, only a limited number of helminth species have been identified in this animal host so far.MethodsAncylostoma sp. was isolated from a wild pangolin, and the complete mitochondrial (mt) genome of Ancylostoma sp. was obtained by Illumina sequencing of total genomic DNA.ResultsThe circular complete mt genome that was assembled had a total length of 13,757 bp and comprised 12 protein-coding genes (PCGs), 22 transfer ribosomal RNAs, two ribosomal RNAs (rRNAs), two non-coding regions and one AT-rich region, but lacked the gene coding for ATPase subunit 8 (atp8). The overall AT content of the mt genome of Ancylostoma sp. was 76%, which is similar to that of other nematodes. The PCGs used two start codons (ATT and TTG) and three stop codons (TAA, TAG, and T). The nucleotide identity of the 12 PCGs ranged from 83.1% to 89.7% and had the highest sequence identity with Ancylostoma caninum among species in the Ancylostomatidae family. Also, the pangolin-derived Ancylostoma sp. lacked repeat sequences in the non-coding regions and in the unique sequence of the short non-coding regions, which differentiated it from other Ancylostoma species. In addition, phylogenetic analyses of 18S rRNA and mtDNA sequences revealed that the Ancylostoma sp. was positioned in a separate branch in the subfamily Ancylostomatinae along with other Ancylostoma species.ConclusionsThe Ancylostoma sp. isolated from a pangolin in this study was identified as a possible new Ancylostoma species. The identification of this Ancylostoma sp. from pangolin enriches our knowledge of the species in the Ancylostomatidae family and provides information that will lead to a better understanding of the taxonomy, diagnostics, and biology of hookworms.Graphical
Read full abstract