To retrospectively develop and validate an interpretable deep learning model and nomogram utilizing endoscopic ultrasound (EUS) images to predict pancreatic neuroendocrine tumors (PNETs). Following confirmation via pathological examination, a retrospective analysis was performed on a cohort of 266 patients, comprising 115 individuals diagnosed with PNETs and 151 with pancreatic cancer. These patients were randomly assigned to the training or test group in a 7:3 ratio. The least absolute shrinkage and selection operator algorithm was employed to reduce the dimensionality of deep learning (DL) features extracted from pre-standardized EUS images. The retained nonzero coefficient features were subsequently applied to develop predictive eight DL models based on distinct machine learning algorithms. The optimal DL model was identified and used to establish a clinical signature, which subsequently informed the construction and evaluation of a nomogram. Gradient-weighted Class Activation Mapping (Grad-CAM) and Shapley Additive Explanations (SHAP) were implemented to interpret and visualize the model outputs. A total of 2048 DL features were initially extracted, from which only 27 features with coefficients greater than zero were retained. The support vector machine (SVM) DL model demonstrated exceptional performance, achieving area under the curve (AUC) values of 0.948 and 0.795 in the training and test groups, respectively. Additionally, a nomogram was developed, incorporating both DL and clinical signatures, and was visually represented for practical application. Finally, the calibration curves, decision curve analysis (DCA) plots, and clinical impact curves (CIC) exhibited by the DL model and nomogram indicated high accuracy. The application of Grad-CAM and SHAP enhanced the interpretability of these models. These methodologies contributed substantial net benefits to clinical decision-making processes. A novel interpretable DL model and nomogram were developed and validated using EUS images, cooperating with machine learning algorithms. This approach demonstrates significant potential for enhancing the clinical applicability of EUS in predicting PNETs from pancreatic cancer, thereby offering valuable insights for future research and implementation.
Read full abstract