Pansharpening, which fuses the panchromatic (PAN) band with multispectral (MS) bands to obtain an MS image with spatial resolution of the PAN images, has been a popular topic in remote sensing applications in recent years. Although the deep-learning-based pansharpening algorithm has achieved better performance than traditional methods, the fusion extracts insufficient spatial information from a PAN image, producing low-quality pansharpened images. To address this problem, this paper proposes a novel progressive PAN-injected fusion method based on superresolution (SR). The network extracts the detail features of a PAN image by using two-stream PAN input; uses a feature fusion unit (FFU) to gradually inject low-frequency PAN features, with high-frequency PAN features added after subpixel convolution; uses a plain autoencoder to inject the extracted PAN features; and applies a structural similarity index measure (SSIM) loss to focus on the structural quality. Experiments performed on different datasets indicate that the proposed method outperforms several state-of-the-art pansharpening methods in both visual appearance and objective indexes, and the SSIM loss can help improve the pansharpened quality on the original dataset.
Read full abstract