The cycle of livestock depredation and retaliatory killing constitutes a major threat to large carnivores worldwide and imposes considerable hardships on human communities. Mitigation efforts are often undertaken with little knowledge of ecological underpinnings and patterns of depredation, limiting conservationists' ability to develop, prioritize, and evaluate solutions. Carnivore detection and depredation data from interviews in affected communities may help address this gap, but such data are often prone to false-positive uncertainty. To address these challenges in the Pamir Mountains of Tajikistan we collected snow leopard, lynx, wolf, and bear detection and depredation reports from local communities via semi-structured interviews. We used a novel hierarchical multi-species multi-state occupancy model that accounted for potential false-positives to investigate carnivore site use and depredation concurrently with respondents' apparent vulnerability to that risk. Estimated false-positive probabilities were small, but failure to account for them overstated site use probabilities and depredation risk for all species. Although individual vulnerability was low, depredation was nonetheless commonplace. Carnivore site use was driven by clear habitat associations, but we did not identify any clearly important large-scale spatial correlates of depredation risk despite considerable spatial variation in that risk. Respondents who sheltered livestock in household corrals reinforced with wire mesh were less likely to report snow leopard depredations. Reducing depredation and retaliation at adequately large scales in the Pamirs will likely require a portfolio of species-specific strategies, including widespread proactive corral improvements. Our approach expanded inference on the often-cryptic processes surrounding human-carnivore conflict even though structured wildlife data were scarce.