Vein pattern recognition is one of the newest biometric techniques researched today. In this paper, one of the reliable and robust personal identification authentication approaches using palm vein patterns is presented. We consider the palm vein as a piece of texture and apply texture-based feature extraction techniques to palm vein authentication in our work. A 2-D Gabor filter provides the optimized resolution in both the spatial and frequency domains, thus it is a basis for extracting local features in the palm vein recognition. In order to obtain effective pattern of palm vascular, we proposed an innovative and robust directional coding technique to encode the palm vein features in bit string representation. The bit string representation, called VeinCode, offers speedy template matching and enables more effective template storage and retrieval. The similarity of two VeinCodes is measured by normalized hamming distance. A total of 4140 palm vein images were collected form 207 persons to verify the validity of the proposed palm vein recognition approach. High accuracy has been obtained by the proposed method and the speed of the method is rapid enough for real-time palm vein recognition. Experimental results demonstrate that our proposed approach is feasible and effective for palm vein recognition.
Read full abstract