The Waziristan ophiolite complex (WOC), a segment of paleo-suture zone between the Indo-Pakistan plate to the south-east and the Afghan microplate to the north-west, is primarily composed of serpentinized dunites and serpentinites after harzburgites, crosscut by pyroxenites. The crustal portion dominantly comprises basalts and dolerites, with less abundant plagiogranites. Whole-rock XRF and trace element ICP-MS analyses were undertaken to determine the degree of melt extraction and subsequent geochemical depletion or enrichment of peridotite protoliths. The investigated peridotites are extremely refractory and show high Mg# values (0.88–0.92), low Al2O3 (0.19–0.96 wt%), total alkali values (0.02 < Na2O + K2O ≤ 0.20 wt%), CaO (0.04–0.73 wt%), and TiO2 (0.001–0.017 wt%), but are rich in Cr (up to 3550 ppm) and Ni (up to 2340 ppm). Bulk REE modelling suggests that Waziristan peridotites underwent a high degree (15%–25% melting) of melt extraction in the closed system of spinel-bearing peridotite facies at shallow depths above a subduction zone and, in their chemistry (Sc, REE, Al2O3, and MgO), resemble Izu-Bonin-Mariana (IBM) forearc peridotites. Their U-shaped REE patterns and trace elements resemble peridotites derived from supra-subduction zone (SSZ) settings, especially a forearc setting, and also reflect metasomatism by slab-derived fluids. The ultramafic rocks preserve depletion in REE content (0.03 < ΣREECN < 0.60), indicating the highly depleted nature of refractory peridotites. The basalts (Mg#, 0.48-0.68) are similar in composition to typical boninite and show low to moderate MgO (6.2–13.0 wt%), low total alkali content (0.01–4.45 wt%) and TiO2 (0.13–0.17 wt%), but are higher in Al2O3 (≈11.9 wt%). They show a sub-alkaline affinity and possess geochemical signatures that are transitional from island arc basalt (IAB) magmas to boninitic magmas due to the changes from an extensional to a compressional regime during the initiation of subduction. These geochemical signatures suggest the formation of basalts from melts, resulting from the re-melting of the depleted mantle during intra-oceanic subduction initiation. The higher Th/Nb and V/Ti ratios of the studied basalts further confirm their generation in an SSZ setting characterized by subduction-derived fluids under higher oxidizing conditions. The mafic-ultramafic rocks of the WOC were, therefore, likely formed during intra-oceanic subduction initiation (forearc spreading) in the SSZ setting; they were exhumed along a thrust fault, and obducted onto the forearc region as result of the collision between the Indian plate and the Afghan microplate.
Read full abstract