Abstract

Abstract The Southern Granulite Terrane (SGT) in India preserves the records of the formation and recycling of continental crust from Mesoarchean through Paleoproterozoic to Neoproterozoic and Cambrian, involving multiple subduction–accretion–collision associated with major orogenic cycles. A chain of unmetamorphosed and undeformed alkaline magmatic intrusions occurs along the northern margin of the SGT aligned along paleo-suture zones. Here we investigate two representative plutons from this suite, the Angadimogar syenite (AM) and the Peralimala alkali granite (PM) through field, petrological, geochemical, zircon U–Pb and Lu–Hf studies. Magma mixing and mingling textures and mineral assemblages typical of alkaline rocks are displayed by these plutons. The whole-rock major and trace element data characterize their alkaline nature. In trace element discrimination diagrams, the AM rocks straddle between the VAG (volcanic-arc granites) and WPG (within plate granites) fields with most of the samples confined to the VAG field, whereas the PM rocks are essentially confined to the WPG field. The diversity in some of the geochemical features between the two plutons is interpreted to be the reflection of source heterogeneities. Most zircon grains from the AM and PM plutons display oscillatory zoning typical of magmatic crystallization although some grains, particularly those from the PM pluton, show core-rim structures with dark patchy zoned cores surrounded by irregular thin rims resulting from fluid alteration. The weighted mean 206 Pb/ 238 U ages of the magmatic zircons from three samples of the AM syenite are in the range of 781.8 ± 3.8 Ma to 798 ± 3.6 Ma and those from two samples of the PM alkali granite yield ages of 797.5 ± 3.7 Ma and 799 ± 6.2 Ma. A mafic magmatic enclave from the AM pluton shows weighted mean 206 Pb/ 238 U age of 795 ± 3.3 Ma. The AM and PM plutons also carry rare xeneocrystic zircons which define upper intercept concordia ages of 3293 ± 13 Ma and 2530 ± 22 Ma correlating with the ages of the basement rocks from these areas. The initial 176 Hf/ 177 Hf isotope ratios of the zircon grains from the AM syenite fall in the range between 0.281771 and 0.282284, with moderately negative eHf(t) values between − 5.9 and 0.1. Similarly, the initial 176 Hf/ 177 Hf isotope ratios for the zircon grains of PM ultrapotassic granite range between 0.281197 and 0.281970, albeit with more negative eHf(t) values in the range between − 22.7 and − 0.3 (average eHf (t) value − 18.8). The Lu–Hf data suggest the involvement of variable extent of older crust with distinct crustal residence times, either in the form of assimilation during magma emplacement, or crustal recycling during magma genesis. Based on the geochemical and isotopic systematics, a possible petrogenetic model would be asthenospheric upwelling in an extensional setting, melting of enriched lithosphere, and interaction of the magmas with lower crustal domains with subduction-related components of various ages. The disposition of these alkali plutons along two paleo sutures that weld the Meso-Neoarchean crustal blocks in the northern periphery of SGT suggests that the zones of emplacement might represent an aborted rift. The paleo-sutures probably served as a weak zone along which extension occurred broadly coeval with the Cryogenian subduction further south.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call