A sustainable agriculture that can satisfy the ever-rising global demand for food and animal feeds is becoming a manifest necessity in the light of the growing population, and the security concerns in the increasing land-use for food/feed. There has been a recent growth of interest in the positive impact of the functional ingredients derived from plants on human health. The proposed beneficial effects of such ingredients span from a decrease in plasma glucose levels and in preventing hypertension, to controlling obesity, improving satiety and stabilizing plasma lipid homeostasis. Lupin is a sustainable crop that plays an important role in organic farming, thus, the interest in lupin as a protein source for human and animal nutrition has increased in recent years. The use of legumes as a source of protein is somewhat limited by the low digestibility of most plant proteins (Neves et al., 2006). Previous digestibility studies of protein obtained from legumes have shown interactions between antinutritional compounds, such as trypsin inhibitors and tannins, and the decreased proteolytic susceptibility of protein complexes, thereby decreasing the food value of plant proteins (Agte et al., 1998). The digestibility of lupin protein could be improved by lactic acid fermentation (Bartkiene et al., 2015). However, it should be noted that lactic acid fermentation is a traditional process for food and feed production that may also result in the formation of undesirable compounds (e.g., biogenic amines and D-lactate). Also, lupin exhibits useful techno functional properties allowing its use as an ingredient in the production of several palatable food products, such as biscuits, pasta, and bread (Lee et al., 2006; Guillamon et al., 2010; Jayasena and Nasar-Abbas, 2011, 2012; Bartkiene et al., 2013a, 2016b). For instance, the supplementation of wheat flour with the high-protein lupin flours can improve the nutritional quality of baked goods (Gomez et al., 2008). In addition, lupine does not contain gluten (a mixture of proteins found in wheat and related grains), thus, it could be used as a functional ingredient in gluten-free foods (Scarafoni et al., 2009). However, the use of lupin flour with a high protein content for the production of cereal products may cause problems associated with the formation of acrylamide (Bartkiene et al., 2013b, 2016a). The tolerable daily intake (TDI) levels of acrylamide for neurotoxicity were estimated to be 40 μg/kg per day and for cancer—2.6 μg/kg per day (Tardiff et al., 2010). Mitigation strategies propose modifying the product formulations or processing conditions, to minimize the pathways of acrylamide formation. For this reason, it is very important to assess the risk of new raw materials and technological procedures and to evaluate the safety parameters of the finished products.
Read full abstract