Different from prevalent approaches such as immunological recognition, complementary base pairing, or enzymatic regulation in current photoelectrochemical (PEC) sensing, this study reported an excited-state intramolecular proton transfer (ESIPT)-driven photon-gating PEC sensor. The sensor is developed for the detection of CO-releasing molecule-3 (CORM-3) by modifying an ESIPT-switched organic fluorescent probe molecule (NDAA) onto the surface of a p-type semiconductor (BiOI). The NDAA can be excited and exhibit strong green fluorescence after responding with CORM-3, resulting in an electrode-interface photon competitive absorption effect due to the switch on ESIPT and considerably reducing the photocurrent signal. The experimental results revealed that the as-developed PEC sensor achieved good analytical performance with high selectivity and sensitivity, with a linear range of 0.01-1000 μM and a lower detection limit of 6.5 nM. This work demonstrates the great potential of the organic fluorescent probe molecule family in advancing PEC analysis. It is anticipated that our findings will stimulate the creation of diverse functional probes possessing distinctive characteristics for inventive PEC sensors.
Read full abstract