In [A type D structure in Khovanov homology, preprint (2013), arXiv:1304.0463; A type A structure in Khovanov homology, preprint (2013), arXiv:1304.0465] the author constructed a package which describes how to decompose the Khovanov homology of a link ℒ into the algebraic pairing of a type D structure and a type A structure (as defined in bordered Floer homology), whenever a diagram for ℒ is decomposed into the union of two tangles. Since Khovanov homology is the categorification of a version of the Jones polynomial, it is natural to ask what the types A and D structures categorify, and how their pairing is encoded in the decategorifications. In this paper, the author constructs the decategorifications of these two structures, in a manner similar to I. Petkova's decategorification of bordered Floer homology, [The decategorification of bordered Heegaard-Floer homology, preprint (2012), arXiv:1212.4529v1], and shows how they recover the Jones polynomial. We also use the decategorifications to compare this approach to tangle decompositions with M. Khovanov's from [A functor-valued invariant of tangles, Algebr. Geom. Topol.2 (2002) 665–741].