Passive demodulation scheme using 3 × 3 coupler has been widely used in phase-sensitive optical time-domain reflectometry (φ-OTDR), interrogation of fiber Bragg gratings or fiber optic interferometric sensors, and sensor multiplexing. However, the asymmetry of the 3 × 3 coupler in real applications affects the demodulation performance seriously. We proposed an ameliorated 3 × 3 coupler-based demodulation algorithm using iteratively reweighted ellipse specific fitting (IRESF) to overcome the drawback. IRESF combines iterative reweight technology with ellipse specific fitting, which decreases the weights of high noise points and always outputs ellipse solutions. Any two output signals from the 3 × 3 coupler-based interferometer are fitted by the IRESF and then corrected as a pair of quadrature signals. The stability of the fitting parameters is utilized to resolve the failures of IRESF under small signals. A real-time 1/4 ellipse arc judging module is designed, if the Lissajous figure is larger than 1/4 ellipse arc, IRESF is executed to offer ellipse correction parameters. Otherwise, the fixed parameters preset in the algorithm are used. The fixed parameters are mean values of the fitting parameters of IRESF under a large stimulus. The desired phase signal is finally extracted from the corrected quadrature signals. Experimental results show that the ameliorated algorithm does not require strict symmetry of the 3 × 3 coupler and can work under small signals. The noise floor of the proposed algorithm is -112 dB re rad/√Hz and the demodulated amplitude is 23.15 dB (14.37 rad) at 1 kHz when THD is 0.0488%. Moreover, the response linearity is as high as 99.999%. Compared to the algorithm using direct least squares, the proposed demodulation algorithm is more robust and precise, which has broad application prospects.
Read full abstract