The coupling capacitor of the MTP cell used in this paper is an NCAP-type capacitor that has only a source contact, and the layout size of the unit cell is 6.184 μm × 6.295 μm (=38.93 μm2), which is 0.44% smaller than the MTP cell that uses the coupling capacitor of the conventional NMOS transistor type that has both a source contact and a drain contact. In addition, a 4 Kb MTP IP with a built-in ECC function using an extended Hamming code capable of single-error correction and double-error detection was designed for safety considerations. In this paper, a new test algorithm is proposed to test whether the ECC function operates normally in the MTP IP with a built-in ECC function, and it is confirmed through a test using logic tester equipment that the output data DOUT[7:0] and the error flag ERROR_FLAG[1:0] are exactly the same in the cases of no error, a single-bit error, and a double-bit error. In addition, by sharing a current-controlled ring oscillator circuit that uses a current-starved inverter in the VPP, VNN, and VNNL charge pumping circuits that share a single ring oscillator in the erase and program operation modes of the MTP IP and using the regulated VPVR as power, the pumping capacitor size is reduced, and a new technology to reduce ripple voltage variation is proposed. Meanwhile, in the VNN level detector circuit that detects whether the VNN has reached the target voltage, a folded-cascode CMOS OP-AMP whose output swing voltage is almost VDD is used instead of a differential amplifier circuit with a PMOS differential input pair to ensure that normal VNN level detection operation occurs.
Read full abstract