In this paper, we investigate the categories of braided objects, algebras and bialgebras in a given monoidal category, some pairs of adjoint functors between them and their relations. In particular, we construct a braided primitive functor and its left adjoint, the braided tensor bialgebra functor, from the category of braided objects to the one of braided bialgebras. The latter is obtained by a specific elaborated construction introducing a braided tensor algebra functor as a left adjoint of the forgetful functor from the category of braided algebras to the one of braided objects. The behavior of these functors in the case when the base category is braided is also considered.
Read full abstract